Emission Control of Anthropogenic Nitrous Oxide
نویسندگان
چکیده
منابع مشابه
Nitrous oxide emission by aquatic macrofauna.
A large variety of aquatic animals was found to emit the potent greenhouse gas nitrous oxide when nitrate was present in the environment. The emission was ascribed to denitrification by ingested bacteria in the anoxic animal gut, and the exceptionally high N(2)O-to-N(2) production ratio suggested delayed induction of the last step of denitrification. Filter- and deposit-feeding animal species s...
متن کاملControl of nitrous oxide during cryosurgery.
Compressed gases such as nitrous oxide (N2O) are often use d to obtain the cold temperatures needed for cryosurgery. Cryosurgical instruments which use compressed gas are designed to allow the gas to expand through a valve inside the metal tip of the cryosurgical probe, causing the tip to reach extremely low temperatures. If the exhaust gas from the probe is improperly vented, N2O concentration...
متن کاملCopper control of bacterial nitrous oxide emission and its impact on vitamin B12-dependent metabolism.
Global agricultural emissions of the greenhouse gas nitrous oxide (N2O) have increased by around 20% over the last 100 y, but regulation of these emissions and their impact on bacterial cellular metabolism are poorly understood. Denitrifying bacteria convert nitrate in soils to inert di-nitrogen gas (N2) via N2O and the biochemistry of this process has been studied extensively in Paracoccus den...
متن کاملSoil formate regulates the fungal nitrous oxide emission pathway.
Fungal activity is a major driver in the global nitrogen cycle, and mounting evidence suggests that fungal denitrification activity contributes significantly to soil emissions of the greenhouse gas nitrous oxide (N(2)O). The metabolic pathway and oxygen requirement for fungal denitrification are different from those for bacterial denitrification. We hypothesized that the soil N(2)O emission fro...
متن کاملNitrous oxide emission from denitrification in stream and river networks.
Nitrous oxide (N(2)O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N(2)O via microbial denitrification that converts N to N(2)O and dinitrogen (N(2)). The fraction of denitrified N that escapes as N(2)O rather than N(2) (i.e., the N(2)O yield) is an imp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studies in Regional Science
سال: 1999
ISSN: 0287-6256,1880-6465
DOI: 10.2457/srs.30.231